4. Additive manufacturing on Uranium alloy samples

Objectives: Build a 8x8x8 mm cube samples with porosities <5%

^aFRAMATOME, CERCATM, 10 Rue Juliette Récamier, 69456 Lyon Cedex 06, France **b LERMPS (Laboratory of Studies and Research on Materials, Process and Surfaces), Université de Technologie de Belfort-Montbéliard, Belfort, France**

Optimize process parameters to enhance the manufacturing process and build part properties

3. 3D printer nuclear adaptation

E. Libouteta,b, B. Stepnik^a , C. Rontard^a , S. Costil^b , C.Verdy b

Recoater (roller or blade)

Building plattform

Laser Beam Melting is one of the mostmanufacture parts with any metals. The laser promising additive manufacturing process. beam is focalized on a 50µm thick powder bed Very small spot size coupling to the high to melt only the right amount of powder to scanning speed and the incredible parametersbuilt one layer. The final part is thus build layer flexibility allow us to freely design and by layer.

framatome

Additive manufacturing of nuclear component

1. Laser Beam Melting

- \Box The first step of the study was to select the metallic 3D printer suitable for nuclear use and uranium alloys
- \Box Then experiments plans were conducted to identify the optimized process parameters range for surrogate materials
- **OFinally, fuel core were produced** and assembled with Al sheets to produce monolithic fuel plate

- \square We have demonstrated that 3D printing technologies can be nuclearized and can produce samples in metallic Uranium alloys
- Now, Framatome-CERCA™ will continue the development works to improve the quality and to increase the sample sizes towards metallic Uranium fuels and metallic Uranium targets for Mo99.

framatome

2. Studies on surrogate materials

Conclusion :

Framatome-CERCA™ has manufactured the world first 3D printing U3Si2 and UMo sample

- In 2018, Framatome CERCATM launched a 3D printing initiative in order to produce metallic Uranium fuels and Uranium targets for Mo-99 production - Preliminary fuel and target developments have been successfully achieved using surrogates materials (see B. Stepnik et al. in RRFM2019) - This work present the world first 3D printing development with Uranium material
- The developments works are performed in partnership with Université de Technologie de Belfort Montbeliard (UTBM)

CONTEXT :

Laser Beam Melting process. [Mueller et all. (2013)

3D printed 8x8x8mm cubes

Part

- Concept Laser Mlab 200R commercial 3D printer deeply modify to suit for Nuclear use
- 200W ND-YAG fiber laser

 \Box Custom glove box specially developed for the device and the uranium use \Box Two different building modules available:

- Module 50x50x80mm
- Module 100x100x100mm

Laser Beam Melting in glovebox

- The samples were produced by laser based additive manufacturing technology using U_3S_i and UMo powder

Fuel core manufactured by Laser Beam melting and X-Ray analysis of Fuel plate

U3 Si2 sample: cube surface; Laser parallel tracks and cracks

U3 Si² powder bed

 \square Use of a 0-40µm ground $\mathsf{U}_3\mathsf{Si}_2$ powder

Si² 4.2 UMo

Melt pool quenching during Laser based additive manufacturing are very fast; $\mathsf{U}_3\mathsf{Si}_2$ parts break under this high thermal strain

Laser tracks are too spaced, recovery ratio need to be improved in order to melt all the building part

Laser additive manufacturing is suitable for U3Si2 alloys with process parameters adjustments

Use of a 0-90µm spherical UMo powder

• First experimental plan observations: **UMo Cube sample manufacturing**

 \Box Lots of melted drops ejected from the melt pool (key hole effect)

Samples with many irregularities (porosities and satellites)

• Second experimental plan observation:

 \Box Reduction of melted drops and irregularities

 \square Samples denser, smoother and with less geometrical deformations

Laser additive manufacturing is suitable for U3Si2 alloys with process parameters adjustments

UMo sample: cube surface; surface satellites

 \square Solution: Reduce the laser power and adjust the scanning speed

UMo sample with low porosities and laser scanning tracks

 \square Samples presents no cracks or irregularities.

 \Box Promising results of UMo samples additive manufacturing

Mlab Cusing 200R device

