framatome

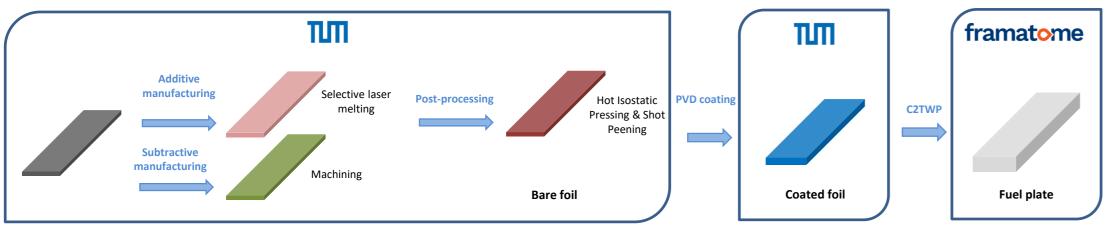
Developments of U-Mo monolithic plates with gradient foils

S. LORAND¹, J. ALLENOU¹, B. STEPNIK¹, C. RONTARD¹, B. BAUMEISTER², C. SCHWARZ², C. STEYER², C. REITER², W. PETRY²

¹ Framatome – CERCA™ division, 10, Rue Juliette Récamier, 69456 Lyon Cedex 06 – France ² Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz, FRM II, 85747 Garching, Germany

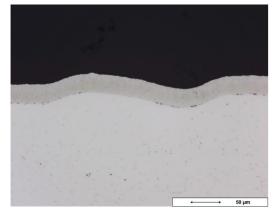
CONTEXT:

- To convert the European High Performance Research Reactors (EUHPPR), the European consortium HERACLES supports R&D efforts on UMo A pilot line of U-Mo monolithic fuel manufacturing and inspection is currently implemented in Framatome-CERCA[™]'s R&D laboratory, CRIL monolithic and dispersion LEU fuels. (CERCA[™] Research and Innovation Laboratory).
- In the framework of the HERACLES consortium, Framatome CERCA[™] and Technical University of Munich (TUM) are developing U-Mo Funded by the European Commission through the H2020 project LEU-FOREvER. monolithic fuel.


1. Manufacturing project

Two fuel variants based on uranium-molybdenum (UMo) alloys: dispersed and monolithic. High-performance research reactors, like TUM's FRM II reactor, may require U-Mo foils with varying thickness, so-called gradient foils. □ Collaboration between TUM and Framatome - CERCA[™] for the development of a European chain for the fabrication of U-Mo monolithic fuel plate. □ TUM develops the coating process while CERCA[™] develops C2TWP plate fabrication process.

2. R&D process


Evaluation in inert material to test robustness of the process before switching to U-Mo gradient foils and plates.

■ Research is shared between TUM and CERCA[™].

3. Preparation and C2TWP processing

Number of trial	N°lnert GRADIENT Foil	Foils manufacturing process	Parameter 1	Parameter 2
1	#207-SS316L- SLM	SLM + Shoot peening	C2TWP 1	P1
2	#217-SS321-M+	Machining	C2TWP1	P2
3	#218-SS321-M+	Machining	C2TWP2	P2

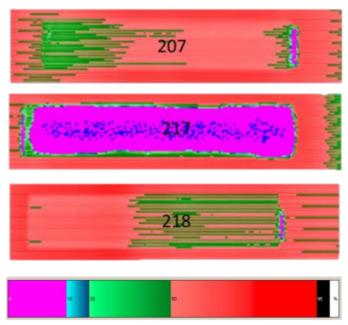
Cross-section of a Zr-coated HPM foil

Cross-section of a Zr-coated SLM foil

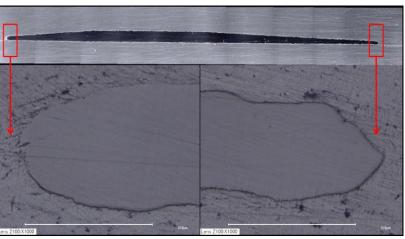
Machining foils present a smooth surface and regular Zr layer.

Machining induce material loss during process.

Fabrication and C2TWP parameters of the 3 mini-size inert foils


□ SLM foils shows irregular surfaces despite post-processing and small bending in large design.

□ SLM have better yield than machining but 3 steps process.


4. C2TWP results

Results of UT analysis on inert gradient mini-size foils

□ Full decohesion on plates 217 with set of parameters C2TWP and P1.

- Radial decohesion on the end of foils 207 and 218.
- No decohesion between foils/clad and between clad/clad on plates 207 and 218.
- C2TWP parameters and cladding preparation could be optimized to remove end gap.
- Check of the bonding quality by metallography on SLM based plate.
- Ultrasonic and X-Ray test successfully passed.
- The cross section of the plate 207 highlights a good bonding.
- □ The surface of the SLM + Shoot Peening foils are acceptable for C2TWP.
- Good enclosure of gradient foil in aluminum cladding by C2TWP.

Optical micrograph of a cross section of the plate 207

Conclusion :

- Feasibility of the C2TPW process to produce the cladding on the inert mini-size gradient foils has been demonstrated.
- Optimization of the C2TWP process should be conduct to solve the residual defects of bonding at the fuel plate ends.
- The SLM process to produce the gradient foils seems to be compatible with the C2TWP process.
- The "Shoot peening" surface finishing after the SLM process seems to be sufficient to ensure a good bonding in the C2TWP process.
- Development on full-size inert gradient foils are required before tests and validation on DU-Mo coated mini-size gradient foils on DU-Mo coated full-size gradient foils.

framatome